石油和天然气作为全球能源体系的核心支柱,其稳定开采对经济发展与社会运转至关重要。然而,从深达数万英尺的地下储层到偏远恶劣的地面作业环境,这一行业始终面临着贯穿全流程的复杂运营挑战——从高压高温条件下的钻井风险、地下地质的不确定性,到井体完整性维护、设备腐蚀老化,再到偏远环境中的物流难题、数字化整合瓶颈以及日益严格的环境合规要求。这些挑战交织着技术瓶颈、环境压力与管理难题,考验着行业的创新能力与应对智慧。矿业外刊Azo Mining的这篇文章将系统梳理这些多维度的运营困境,解析其深层成因,并探寻现场作业与服务提供商通过技术突破和策略优化所采取的应对之道,为理解油气开采行业的复杂性与发展路径提供全景视角。
The Operational Challenges of Oil and Gas Extraction
石油和天然气开采的运营挑战
By Ankit Singh Aug 12 2025
Oil and gas extraction is essential for the global energy supply, but the industry faces various types of operational challenges that extend from the reservoir to the rig and beyond. The complexity inherent in extracting hydrocarbons requires a blend of technical expertise, advanced equipment, and innovative strategies to achieve safe, efficient, and profitable operations. This article examines the multifaceted nature of these operational difficulties and technological responses from field operations and service providers.
油气开采对于全球能源供应至关重要,但这一行业面临着从油气藏到钻井平台及其他环节的多种运营挑战。由于开采碳氢化合物本身的复杂性,需要结合技术专长、先进设备和创新策略,才能实现安全、高效且有利可图的运营。本文探讨了这些运营困难的多面性,以及现场作业和服务提供商所采取的技术应对措施。
Drilling Hazards and Subsurface Uncertainty钻井风险与地下地质不确定性
Drilling wells in high-pressure, high-temperature (HPHT) zones comes with numerous challenges. These reservoirs, typically found at depths over 15,000 feet, experience temperatures above 300°F and pressures exceeding 15,000 psi. Such conditions can compromise drilling fluids, impact equipment reliability, and contribute to wellbore instability and thermal expansion or contraction of components. The risk of formation fluid influx, stuck pipe incidents, and lost circulation increases in HPHT environments, potentially leading to unplanned downtime or even abandonment of wells.
在高压高温(HPHT)区域钻井面临诸多挑战。这类油气藏通常位于超过15,000英尺的深度,温度超过300°F,压力超过15,000 psi。这种条件可能会影响钻井液的性能,降低设备可靠性,并导致井筒不稳定以及井筒部件的热膨胀或收缩。高压高温环境下,地层流体涌入、钻杆卡阻和循环失控的风险增加,可能导致非计划停工,甚至弃井。
Operators often face unexpected reservoir conditions such as fault slips and fluid migration. In ultra-deep or fractured reservoirs, limited data can hinder accurate predictions, leading to unreliable reserve estimates until enough production data is gathered. This uncertainty in subsurface geology challenges investment decisions and requires adaptable drilling strategies. In some cases, well abandonment is required when severe faults or uncontrolled influxes damage infrastructure and compromise safety.
运营方常常会遇到意外的油气藏条件,如断层滑移和流体迁移。在超深或破碎油气藏中,数据有限会阻碍准确预测,从而导致储量估算不可靠,直到积累足够的生产数据。这种地下地质不确定性会对投资决策带来挑战,并需要灵活的钻井策略。在某些情况下,当严重断层或失控涌入损坏基础设施并危及安全时,需要进行弃井。
Well Integrity and Maintenance Failures井完整性与维护失效
Maintaining well integrity is important for safe and sustainable extraction. Issues such as casing collapse, annular pressure buildup, and compromised zonal isolation in aging wells can reduce productivity and safety. Corrosion, mechanical wear, and cement bond failures are common culprits, especially in older wells or during enhanced recovery operations.
保持井完整性对于安全和可持续开采至关重要。老井或强化采油作业中,可能出现套管塌陷、环空压力升高及层段隔离受损等问题,这些都会降低生产效率并危及安全。腐蚀、机械磨损以及水泥胶结失效是常见原因。
Technological advances have led to the deployment of real-time well integrity monitoring systems. Machine learning (ML) algorithms and predictive analytics can analyze operational data to identify potential integrity failures. Similarly, digital twin technology helps operators simulate conditions and evaluate non-destructive testing results.
技术进步促使实时井完整性监测系统的应用。机器学习算法和预测分析可以分析运营数据,识别潜在的完整性失效。同样,数字孪生技术帮助运营方模拟井下条件,并评估无损检测结果。
Companies such as TotalEnergies use acoustic and electromagnetic monitoring tools to detect early signs of corrosion and mechanical damage, allowing timely intervention to maintain safety and operational efficiency.
例如TotalEnergies公司使用声学和电磁监测工具,检测早期腐蚀和机械损伤迹象,从而及时干预,保障安全和运营效率。
Surface Equipment and Infrastructure Challenges地面设备与基础设施挑战
Pumps, compressors, and separator units frequently face failures in mature oil and gas fields. The suppressive effect of corrosive fluids such as hydrogen sulfide, carbon dioxide, and brine accelerates the degradation of key components. In these conditions, corrosion monitoring becomes crucial, and operators should follow established pipeline pigging frequencies to manage microbial growth and prevent blockages.
在成熟油气田,泵、压缩机和分离装置经常发生故障。硫化氢、二氧化碳和盐水等腐蚀性流体会加速关键部件的老化。在这种情况下,腐蚀监测至关重要,运营方应遵循既定的管道清管频率,以控制微生物生长并防止堵塞。
Downtime associated with equipment failure leads to deferred production and can become prolonged if replacement parts are not readily available or predictive maintenance is improperly managed.
设备故障导致的停机会延迟生产,如果备件不足或预测性维护管理不当,停机时间可能会进一步延长。
Internet of Things (IoT) sensors and automated alerts can aid in predictive maintenance and minimize production delays. However, the complexity of operating multiple legacy systems often restricts the seamless integration necessary for complete reliability. Maintenance strategies must evolve to enhance efficiencies and ensure consistent performance.
物联网(IoT)传感器和自动化警报可以辅助预测性维护,减少生产延误。然而,多个遗留系统的操作复杂性常常限制了实现完全可靠性的无缝集成。维护策略必须不断演进,以提高效率并确保性能稳定。
Remote and Harsh Environment Operations偏远与恶劣环境作业
Extraction in offshore, Arctic, and deep desert environments comes with unique challenges—chief among them isolation, extreme weather, and limited infrastructure. Oman’s oil fields offer a clear example: moving equipment and personnel deep into the desert involves complex logistics, while sandstorms, salt exposure, and intense heat take a toll on human health and equipment durability.
在海上、北极和深沙漠环境中开采面临独特挑战,其中最主要的是地理位置偏远、极端天气和基础设施有限。Oman油田是一个典型例子:将设备和人员运送到沙漠深处涉及复杂的物流,而沙尘暴、盐雾侵蚀和高温会损害人体健康并降低设备耐久性。
Limited access for maintenance further compounds the risk. If a critical system fails, repair crews may face long delays and higher costs before work can begin. In Arctic regions, permafrost thaw and severe winter storms add yet another layer of operational hazard.
维护通道受限进一步加大风险。如果关键系统故障,维修团队可能面临长时间延迟和高昂成本。在北极地区,永久冻土(Permafrost)融化和严冬风暴增加了运营风险。
To mitigate these issues, some companies—such as those operating offshore platforms in Norway—have shifted toward remote operations with fewer on-site staff. Industrial IoT systems, edge AI, and digital twins help sustain safety and efficiency in these environments. Robotic inspection units, fitted with cameras and sensors, can navigate hard-to-reach areas and provide real-time condition reports, allowing operators to address problems before they escalate.
为缓解这些问题,一些公司(如挪威海上平台运营商)已转向远程操作,减少现场人员。工业物联网系统、边缘人工智能和数字孪生技术有助于在这些环境中维持安全和效率。配备摄像头和传感器的机器人巡检单元可以进入难以到达的区域,并提供实时状况报告,使运营方在问题升级前进行处理。
Flow Assurance and Production Chemistry流动保障与生产化学
Hydrate formation, wax deposition, and asphaltene buildup in pipelines are major flow assurance obstacles. These phenomena obstruct fluid movement from the reservoir, lowering flow rates and necessitating frequent pigging or chemical treatments. Hydrate and solid plugs are primarily found in subsea pipelines, where removal can be expensive and hazardous.
管道中水合物形成、石蜡沉积和沥青质堆积是主要的流动保障障碍。这些现象阻碍油气从油藏流动,降低流速,并需要频繁清管或化学处理。水合物和固体堵塞主要出现在海底管道中,清除成本高且危险。
Chemical injection, thermal treatments, and next-generation inline monitoring systems have become important tools. Operators increasingly use sensor arrays to track the onset of blockages and adjust inhibitor dosing in real-time. The problems intensify in mature fields, where increased water fraction heightens the likelihood of emulsions and scaling. Breaking stable emulsions and removing scale require cost-effective interventions and constant innovation in fluid management techniques.
化学注入、热处理以及新一代在线监测系统已成为重要工具。运营方越来越多地使用传感器阵列实时监测堵塞的发生,并调整抑制剂剂量。在成熟油田中,含水率增加使乳化和结垢问题更加严重。破坏稳定乳化液和去除结垢需要具有成本效益的干预措施,并持续创新流体管理技术。
Workforce Availability and Onsite Safety劳动力供给与现场安全
There is a shortage of experienced drillers and field engineers, and oil field operations continue to be among the most hazardous workplaces. High-pressure zones, confined spaces, and exposure to toxic chemicals significantly elevate accident risks. Data from the U.S. Bureau of Labor Statistics shows that oil and gas extraction workers are much more likely to die on the job than across other sectors.10
经验丰富的钻井工和现场工程师短缺,油田作业仍是最危险的工作之一。高压区、受限空间以及接触有毒化学品显著增加事故风险。美国劳工统计局的数据显示,油气开采工人在工作中死亡的可能性远高于其他行业。
Fatigue from long shifts and safety lapses caused by rotation inefficiencies contribute to human error. To counter this, real-time safety monitoring and improved protective equipment, combined with more effective rotation schedules, can reduce accident rates. Additionally, training on new hazards and routine safety audits are now a central part of on-site risk management strategies.
长班次导致的疲劳以及轮班安排不合理引起的安全疏忽增加了人为错误。为应对这一问题,实时安全监控和改进的防护装备,结合更有效的轮班计划,可降低事故率。此外,针对新风险的培训和常规安全审计已成为现场风险管理策略的核心部分。

Digitalization Challenges in Oil and Gas油气行业数字化挑战
Integrating data streams across drilling, production, and processing remains a significant challenge. Old IT infrastructure often lacks the bandwidth for IoT and AI deployment, affecting real-time monitoring and predictive analytics. Limited interoperability between vendor platforms and company software further introduces inefficiencies, slows troubleshooting, and complicates asset health management.
将钻井、生产和加工的数据流整合仍是重大挑战。老旧IT基础设施通常无法支持物联网和人工智能的部署,从而影响实时监控和预测分析。供应商平台与公司软件之间的互操作性受限,进一步导致效率低下、故障排查缓慢,并使资产健康管理复杂化。
Companies are investing heavily in digital transformation to address these bottlenecks. For example, the digital oilfield model employs cloud computing and big data analytics to analyze operational data and optimize workflows. Although there is an understanding of the importance of digitalization, the need to adapt and upgrade existing systems remains a key barrier in realizing its full potential.
企业正在大量投资数字化转型以解决这些瓶颈。例如,数字油田模型利用云计算和大数据分析分析运营数据并优化工作流程。尽管企业认识到数字化的重要性,但适应和升级现有系统仍是实现其全部潜力的关键障碍。
Environmental Compliance in Operations运营中的环境合规性
Operational non-compliance with regulations can lead to costly shutdowns and legal action. Issues such as spills, gas flaring, and emissions breaches require constant monitoring, thorough documentation, and accurate reporting on-site. To address these challenges, technologies for methane leak detection are advancing, and their use carries regulatory implications, particularly in U.S. shale fields where emissions standards have tightened.
运营过程中若不遵守相关法规,可能导致高昂的停产成本甚至法律诉讼。诸如泄漏、燃气放空和排放超标等问题需要持续监测、完整记录以及现场准确报告。为应对这些挑战,甲烷泄漏检测技术正在不断发展,其应用也带来了监管层面的影响,尤其是在美国页岩油气田,随着排放标准日益趋严,相关要求进一步提高。
To enhance compliance efforts, environmental monitoring platforms have emerged that integrate sensor networks, data loggers, and artificial intelligence. These systems work together to identify leaks or violations, promptly addressing potential issues. Automated reporting and audit trails also streamline the response process. However, the complexity and variability of real-world field conditions make compliance a daily challenge.
为加强合规管理,环境监测平台应运而生,这类平台整合了传感器网络、数据记录器以及人工智能技术,协同运行以识别泄漏或违规行为,并能及时处置潜在问题。自动化报告与审计追踪功能进一步简化了应对流程。然而,复杂多变的现场工况依然使合规成为一项日常性挑战。
Logistical and Supply Chain Disruptions物流与供应链中断
Geopolitical instability and global transport bottlenecks often disrupt the flow of critical spare parts and chemicals to remote energy sites. Extended lead times for specialist equipment—such as electric submersible pumps and subsea connectors—can put operational continuity at risk. With limited on-site storage for essential consumables, operators must balance precise inventory control with robust contingency planning, adding further complexity to supply chain management.
地缘政治动荡与全球运输瓶颈常常扰乱关键备件和化学品向偏远能源项目的供应。诸如电潜泵、海底连接器等专业设备的交付周期被大幅拉长,可能对运营连续性构成风险。由于现场储备的关键消耗品有限,运营方必须在精准库存管理与完善应急预案之间寻求平衡,这也使供应链管理更加复杂。
To reduce these vulnerabilities, companies are diversifying their supplier base, developing local manufacturing capabilities, and adopting advanced inventory tracking systems. Predictive analytics and supply chain modeling play a central role, enabling operators to forecast demand for parts and chemicals with greater accuracy. By anticipating needs and identifying potential delays early, these tools help minimize downtime caused by shipping holdups or customs processes, keeping operations running smoothly.
为降低上述脆弱性,企业正通过多元化供应商体系、发展本地制造能力以及采用先进的库存追踪系统来强化韧性。预测分析与供应链建模在其中发挥核心作用,使运营方能够更精准地预测零部件和化学品需求。通过提前预判需求并及早识别潜在延误,这些工具有助于最大限度减少因运输延误或海关流程造成的停工风险,从而保障运营顺畅。
Future Prospects and Conclusion未来前景与结论
Industry leaders are increasingly using technology to manage operational risks. Companies such as Halliburton offer advanced well monitoring solutions, while Baker Hughes designs corrosion-resistant tools for environments with high CO2 levels. Today, modern extraction operations rely on robotic systems, AI-driven predictive maintenance, and real-time monitoring.
行业领军企业正日益借助技术手段来管理运营风险。例如,Halliburton提供先进的井下监测解决方案,而Baker Hughes则为高CO₂环境设计耐腐蚀工具。如今,现代化的开采作业依赖机器人系统、人工智能驱动的预测性维护以及实时监控。
In the future, collaboration between equipment manufacturers, service providers, and operators will lead to innovations that alleviate operational challenges. Integrating digital twins, edge computing, and cloud-based analytics enhances efficiency and asset reliability.
展望未来,设备制造商、服务商与运营商之间的协作将推动创新,缓解运营挑战。数字孪生、边缘计算以及云分析的融合应用,有助于提升效率并增强资产可靠性。
In conclusion, oil and gas extraction features a landscape characterized by intrinsic complexity and evolving technical demands. The constant drive for safer, more efficient, and environmentally compliant operations encourages the adoption of innovative solutions. As the industry navigates increasingly remote, harsh, and uncertain environments, addressing operational challenges through rigorous engineering, digital advancement, and strategic resource management remains vital for long-term success.
总体而言,油气开采行业的格局以内在复杂性和不断演变的技术需求为特征。行业对更高安全性、更高效率以及更严格环境合规性的持续追求,正在推动创新解决方案的采用。随着企业进入更偏远、更恶劣且更具不确定性的环境,通过严谨的工程手段、数字化发展以及战略性资源管理来应对运营挑战,将是实现长期成功的关键。
油气开采的每一场“突围战”,都是技术与环境、创新与合规、本土与全球的博弈。而矿业翻译,正是将这些博弈转化为“可控变量”的隐形力量——它让高压高温下的技术参数不失真,让跨国协作的齿轮严丝合缝,让数字化转型的数据流顺畅流动。在能源行业向更深、更险、更复杂领域探索的路上,精准的语言桥梁,始终是安全与效率的第一道保障。
公司介绍
北京阳光创译语言翻译有限公司(Suntrans)成立于 2008 年 2 月。公司总部设立在北京,在美国纽约设有分公司,并在乌干达和巴基斯设有办事处。在董事长吕国博士的带领下,历时15年,阳光创译由最初只有6人的翻译团队发展至今成为拥有50 余名全职管理人员、 1024 名兼职译员和 68 名核心译审人员的专业队伍。
阳光创译是中国领先的专业领域多语服务提供商,是中国专业地质矿业语言服务领军品牌。目前是中国翻译协会成员、中国语言服务产业技术创新联盟成员和中国矿业联合会全球地质信息共享委员会理事会成员。阳光创译致力于为中国地质、矿业以及石油领域企业国际化和本地化提供整体语言解决方案,主要从语言翻译服务、人才培养和咨询服务三方面推进企业的国际化进程。